04 Sensitivity Analysis#

This example demonstrates how to perform sensitivity analysis on CFAST fire simulation models using the SALib library. We’ll use Sobol indices to quantify parameter importance and visualize the results.

Step 1: Import Required Libraries#

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.ticker import FormatStrFormatter
from SALib.analyze import sobol as sobol_analyze
from SALib.sample import sobol as sobol_sample

from pycfast.parsers import parse_cfast_file

Step 2: Load Base Model#

For this example, we’ll use a predefined CFAST input file as our base model. You can replace this with your own model file. We’ll use parse_cfast_file() to load the USN_Hawaii_Test_03.in input file.

model = parse_cfast_file("data/USN_Hawaii_Test_03.in")

The parsed model is displayed below.

model
🔥

CFAST Model

USN_Hawaii_Test_03_parsed.in

Total Components: 5
Simulation: HawaiiTest 3
Duration: 10 min
Compartments (1)
  • Bay 1: 97.6×74.0×14.8 m
Fires (1)
  • Hawaii_03 in Bay 1: Hawaii_03_Fire
Devices (1)
  • Targ 1 in Bay 1: PLATE
Materials (2)
  • CONCRETE: Concrete Normal Weight (6 in)
  • STEELSHT: Steel Plain Carbon (1/16 in)


Step 3: Define the Problem for Sensitivity Analysis#

We specify which parameters to analyze and their realistic ranges. For this example, we focus on four key parameters:

  1. Heat of combustion: Energy released per unit mass of fuel (affects fire intensity)

  2. Radiative fraction: Fraction of fire energy released as radiation (affects heat transfer)

  3. Target thickness: Material thickness of temperature measurement targets

  4. Target emissivity: Surface radiation properties of targets

Each parameter gets a range of realistic values to explore during the analysis.

problem = {
    "num_vars": 4,
    "names": [
        "heat_of_combustion",  # Heat of combustion (MJ/kg)
        "radiative_fraction",  # Fire radiative fraction (adimensional)
        "target_thickness",  # Target material thickness (m)
        "target_emissivity",  # Target material emissivity (adimensional)
    ],
    "bounds": [
        [100, 50000],  # Heat of combustion: 100-50000 MJ/kg
        [0.1, 1.0],  # Radiative fraction: 0.1-1.0
        [0.15, 0.60],  # Target thickness: 0.15-0.60 m
        [0.8, 0.95],  # Target emissivity: 0.8-0.95
    ],
}

print("Sensitivity analysis problem defined:")
for i, name in enumerate(problem["names"]):
    bounds = problem["bounds"][i]
    print(f"  {name}: [{bounds[0]}, {bounds[1]}]")
Sensitivity analysis problem defined:
  heat_of_combustion: [100, 50000]
  radiative_fraction: [0.1, 1.0]
  target_thickness: [0.15, 0.6]
  target_emissivity: [0.8, 0.95]

Step 4: Generate Parameter Samples#

We use Sobol sequences to create well-distributed parameter combinations. Sobol sampling ensures:

  • Good coverage of the parameter space

  • Efficient sampling for sensitivity analysis

  • Proper computation of interaction effects

The number of samples affects accuracy but also computational time.

N = 64  # Number of samples (will generate N*(2*num_vars+2) total samples)
param_values = sobol_sample.sample(problem, N)

print(f"Generated {len(param_values)} parameter combinations")
print(f"Sample shape: {param_values.shape}")

df_samples = pd.DataFrame(param_values, columns=problem["names"])
print("\nFirst 5 parameter combinations:")
print(df_samples.head())
Generated 640 parameter combinations
Sample shape: (640, 4)

First 5 parameter combinations:
   heat_of_combustion  radiative_fraction  target_thickness  target_emissivity
0        31492.521572            0.571776          0.513563           0.814845
1         6615.572754            0.571776          0.513563           0.814845
2        31492.521572            0.120317          0.513563           0.814845
3        31492.521572            0.571776          0.223460           0.814845
4        31492.521572            0.571776          0.513563           0.874361

Step 5: Run Model Evaluations#

Now we run CFAST simulations for each parameter combination. This is the most time-consuming step as we need to:

Progress indicators help track completion of all evaluations.

print("Running model evaluations...")
outputs = []

for i, params in enumerate(param_values):
    if i % 50 == 0:
        print(f"Processing sample {i}/{len(param_values)}")
        print(
            f"hoc={params[0]}, rf={params[1]}, thickness={params[2]}, emissivity={params[3]}"
        )

    temp_model = model.update_fire_params(
        fire="Hawaii_03_Fire",
        heat_of_combustion=params[0],  # heat of combustion in MJ/kg
        radiative_fraction=params[1],  # radiative fraction (0-1)
    )
    temp_model = temp_model.update_material_params(
        material="STEELSHT",
        thickness=params[2],  # thickness in meters
        emissivity=params[3],  # emissivity (0-1)
    )

    results = temp_model.run()
    max_target_temp = results["devices"]["TRGSURT_1"].max()

    outputs.append(max_target_temp)

Y = np.array(outputs)
print(f"Completed {len(outputs)} model evaluations")
print(f"Output shape: {Y.shape}")
Running model evaluations...
Processing sample 0/640
hoc=31492.521572485566, rf=0.5717756270430983, thickness=0.5135625824332237, emissivity=0.8148452483583242
Processing sample 50/640
hoc=9666.265978943557, rf=0.2575571526773274, thickness=0.5482137045823037, emissivity=0.8459060095250607
Processing sample 100/640
hoc=9145.329202152789, rf=0.6222266593016684, thickness=0.1785783180501312, emissivity=0.8263050523120911
Processing sample 150/640
hoc=37227.449157927185, rf=0.31942721037194133, thickness=0.2556590145919472, emissivity=0.8726047772914172
Processing sample 200/640
hoc=38890.82333482802, rf=0.6520382239483297, thickness=0.3485228758770972, emissivity=0.8603055193088949
Processing sample 250/640
hoc=19871.727732289582, rf=0.4109266906045378, thickness=0.4929217284545302, emissivity=0.8670865799766034
Processing sample 300/640
hoc=14215.965873934329, rf=0.6053294532932341, thickness=0.45672696651890865, emissivity=0.8488405632786453
Processing sample 350/640
hoc=47400.74555622414, rf=0.4638157720677555, thickness=0.4750896418467163, emissivity=0.8562633258290588
Processing sample 400/640
hoc=30484.69004649669, rf=0.6103650408796966, thickness=0.3960473406594246, emissivity=0.8879477511625737
Processing sample 450/640
hoc=2438.445478025824, rf=0.3102090531028807, thickness=0.4446570959407836, emissivity=0.9131355569697917
Processing sample 500/640
hoc=1020.0531443580985, rf=0.8546855271793902, thickness=0.2248543360736221, emissivity=0.8426053887233138
Processing sample 550/640
hoc=29075.427332986146, rf=0.536978883575648, thickness=0.16195285082794725, emissivity=0.8185939020011574
Processing sample 600/640
hoc=49595.82871813327, rf=0.5855433824472129, thickness=0.2445194221101701, emissivity=0.9369054885581135
Completed 640 model evaluations
Output shape: (640,)

Step 6: Perform Sobol Sensitivity Analysis#

We calculate Sobol indices to quantify parameter importance:

  • First-order indices (S1): Direct effect of each parameter alone

  • Total-order indices (ST): Total effect including interactions with other parameters

  • Interaction effects (ST - S1): How much parameters interact with each other

Higher values indicate greater influence on the simulation output.

Si = sobol_analyze.analyze(problem, np.array(Y))
print("Sobol Sensitivity Analysis Results:")

print("\nFirst-order indices (S1):")
for i, param_name in enumerate(problem["names"]):
    print(f"  {param_name}: {Si['S1'][i]:.4f}")

print("\nTotal-order indices (ST):")
for i, param_name in enumerate(problem["names"]):
    print(f"  {param_name}: {Si['ST'][i]:.4f}")
Sobol Sensitivity Analysis Results:

First-order indices (S1):
  heat_of_combustion: 0.0279
  radiative_fraction: 0.7355
  target_thickness: 0.0661
  target_emissivity: 0.0355

Total-order indices (ST):
  heat_of_combustion: 0.5501
  radiative_fraction: 0.8324
  target_thickness: 0.0406
  target_emissivity: 0.0574

Step 7: Visualize Sensitivity Results#

The bar charts show:

  • Left panel: First-order effects (direct parameter influence)

  • Right panel: Total effects (including parameter interactions)

  • Error bars: Confidence intervals for the estimates

Parameters with higher bars have greater influence on the simulation output. Large differences between S1 and ST indicate significant parameter interactions.

plt.style.use("seaborn-v0_8-whitegrid")

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6), constrained_layout=True)

names = problem["names"]
x = np.arange(len(names))

S1 = np.asarray(Si["S1"])
S1_conf = np.asarray(Si["S1_conf"])
ST = np.asarray(Si["ST"])
ST_conf = np.asarray(Si["ST_conf"])

cmap = plt.get_cmap("tab10")
bar_width = 0.6

ymax_candidate = np.nanmax([S1 + S1_conf, ST + ST_conf])
ymax = (
    float(np.clip(ymax_candidate + 0.06, 0, 1.0))
    if not np.isnan(ymax_candidate)
    else 1.0
)
ymin = 0.0

ax1.bar(x, S1, width=bar_width, color=cmap(0), edgecolor="black", alpha=0.9)
ax1.errorbar(
    x, S1, yerr=S1_conf, fmt="none", ecolor="black", capsize=5, elinewidth=1.25
)
ax1.set_title("First-order Sensitivity Indices (S1)", fontsize=14)
ax1.set_ylabel("Sensitivity Index", fontsize=12)
ax1.set_xlabel("Parameter", fontsize=12)
ax1.set_xticks(x)
ax1.set_xticklabels(names, rotation=45, ha="right", fontsize=10)
ax1.set_ylim(ymin, ymax)
ax1.grid(which="major", axis="y", linestyle="--", alpha=0.4)

for i, v in enumerate(S1):
    if np.isnan(v):
        txt = "nan"
    else:
        txt = f"{v:.2f} ± {S1_conf[i]:.2f}"
    ax1.text(
        i,
        (v if not np.isnan(v) else 0) + (0.02 if not np.isnan(v) else 0.01),
        txt,
        ha="center",
        fontsize=9,
    )

ax2.bar(x, ST, width=bar_width, color=cmap(1), edgecolor="black", alpha=0.9)
ax2.errorbar(
    x, ST, yerr=ST_conf, fmt="none", ecolor="black", capsize=5, elinewidth=1.25
)
ax2.set_title("Total-order Sensitivity Indices (ST)", fontsize=14)
ax2.set_ylabel("Sensitivity Index", fontsize=12)
ax2.set_xlabel("Parameter", fontsize=12)
ax2.set_xticks(x)
ax2.set_xticklabels(names, rotation=45, ha="right", fontsize=10)
ax2.set_ylim(ymin, ymax)
ax2.grid(which="major", axis="y", linestyle="--", alpha=0.4)

for i, v in enumerate(ST):
    if np.isnan(v):
        txt = "nan"
    else:
        txt = f"{v:.2f} ± {ST_conf[i]:.2f}"
    ax2.text(
        i,
        (v if not np.isnan(v) else 0) + (0.02 if not np.isnan(v) else 0.01),
        txt,
        ha="center",
        fontsize=9,
    )

ax1.yaxis.set_major_formatter(FormatStrFormatter("%.2f"))
ax2.yaxis.set_major_formatter(FormatStrFormatter("%.2f"))

for ax in (ax1, ax2):
    ax.axhline(0, color="gray", linewidth=0.8)
    ax.set_ylim(bottom=ymin)

plt.suptitle("Sobol Sensitivity Indices with 95% Confidence Intervals", fontsize=16)
plt.show()

interaction_effects = ST - S1
print("Interaction Effects (ST - S1):")
for i, param_name in enumerate(names):
    val = interaction_effects[i]
    if np.isnan(val):
        print(f"  {param_name}: nan")
    else:
        tag = "(interactions dominant)" if val > 0.05 else ""
        print(f"{param_name}: {val:.3f}{tag}")
Sobol Sensitivity Indices with 95% Confidence Intervals, First-order Sensitivity Indices (S1), Total-order Sensitivity Indices (ST)
Interaction Effects (ST - S1):
heat_of_combustion: 0.522(interactions dominant)
radiative_fraction: 0.097(interactions dominant)
target_thickness: -0.025
target_emissivity: 0.022

Cleanup#

CFAST generates temporary output files during simulation runs. We clean these up to keep the workspace tidy and avoid confusion with future runs.

import glob
import os

files_to_remove = glob.glob("USN_Hawaii_Test_03*")

for file in files_to_remove:
    if os.path.exists(file):
        os.remove(file)
        print(f"Removed {file}")

if files_to_remove:
    print("Cleanup completed!")
else:
    print("No files to clean up.")
Removed USN_Hawaii_Test_03_parsed_masses.csv
Removed USN_Hawaii_Test_03_parsed.out
Removed USN_Hawaii_Test_03_parsed.log
Removed USN_Hawaii_Test_03_parsed.status
Removed USN_Hawaii_Test_03_parsed.smv
Removed USN_Hawaii_Test_03_parsed.plt
Removed USN_Hawaii_Test_03_parsed.in
Removed USN_Hawaii_Test_03_parsed_compartments.csv
Removed USN_Hawaii_Test_03_parsed_vents.csv
Removed USN_Hawaii_Test_03_parsed_walls.csv
Removed USN_Hawaii_Test_03_parsed_devices.csv
Removed USN_Hawaii_Test_03_parsed_zone.csv
Cleanup completed!

Total running time of the script: (1 minutes 44.422 seconds)

Gallery generated by Sphinx-Gallery